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Abstract 12 

 13 

In the domain of landslide risk science, landslide susceptibility mapping (LSM) is very 14 

important as it helps spatially identify potential landslide-prone regions. This study used a 15 

statistical ensemble model (Frequency Ratio and Evidence Belief Function) and two machine 16 

learning (ML) models (Random Forest and XG-Boost) for LSM in the Belluno province 17 

(Veneto Region, NE Italy). The study investigated the importance of the conditioning factors 18 

in predicting landslide occurrences using the mentioned models. In this paper, we evaluated 19 

the importance of the conditioning factors (features) in the overall prediction capabilities of the 20 

statistical and ML algorithms. By the trial-and-error method, we eliminated the least 21 

"important" features by using a common threshold. Conclusively, we found that removing the 22 

least "important" features does not impact the overall accuracy of the LSM for all three models. 23 

Based on the results of our study, the most commonly available features, for example, the 24 

topographic features, contributes to comparable results after removing the least "important" 25 
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ones. This confirms that the requirement for the important factor maps can be assessed based 26 

on the physiography of the region. Based on the analysis of the three models, it was observed 27 

that most commonly available feature data can be useful for carrying out LSM at regional scale, 28 

eliminating the least available ones in most of the use cases due to data scarcity. Identifying 29 

LSMs at regional scale has implications for understanding landslide phenomena in the region 30 

and post-event relief measures, planning disaster risk reduction, mitigation, and evaluating 31 

potentially affected areas.  32 

 33 

1. Introduction 34 

 35 

Landslides are one of the most frequently occurring natural disasters that cause significant 36 

human casualties and infrastructure destruction. Landslides are triggered by several natural and 37 

man-made triggering events such as earthquakes, volcanic eruptions, heavy rains, extreme 38 

winds, and unsustainable construction activities such as informal settlement development and 39 

cutting of roads along the slopes (Glade et al., 2006; van Westen et al., 2008). Extreme 40 

meteorological events such as the Vaia storm of 2018 triggered landslides and debris flow, 41 

destroyed critical infrastructures in the northern parts of Italy (Boretto et al., 2021). As reported 42 

by (Gariano et al., 2021) in the last 50 years between 1969-2018, landslides posed a severe 43 

threat to the Italian population. Approximately, 1500 out of the 8100 municipalities in Italy 44 

have faced landslides with severe fatalities. Between the years of 1990 and 1999, 263 people 45 

were killed by landslides. Studies by (Rossi et al., 2019) estimated that approximately 2500 46 

people were killed between 1945-1990. Moreover, predictive modelling of the Italian 47 

population at risk to landslides (Rossi et al., 2019) shows massive tendency of risk to the 48 

population with data acquired between 1861-2015, emphasizing the necessity of landslide risk 49 

studies.  50 
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Therefore, to assess landslide risk and plan for suitable risk mitigation measures, it is crucial 51 

to realize the significance of landslide studies, particularly landslide susceptibility mapping 52 

(LSM). LSM is an essential tool that incorporates the potential landslide locations (Senouci et 53 

al., 2021). The probability of a landslide occurring in a particular region owing to the effects 54 

of several causative factors is referred to as landslide susceptibility. LSM is an essential step 55 

towards landslide risk management and helps in effective mapping of the spatial distribution 56 

of probable landslide manifestations (Dai et al., 2002). In the past, researchers have used a 57 

range of models to assess landslide susceptibility using technologies such as Earth Observation 58 

(EO) and Geographic Information Systems (GIS). The extraction and analysis of slope 59 

movements have been going on since the early 1970s (Brabb et al., 1972) and is still one of the 60 

most important tools to perform LSM (Castellanos Abella and Van Westen, 2008; Catani et al., 61 

2013; Chacón et al., 2006; Ercanoglu and Gokceoglu, 2002; Floris et al., 2011; Guzzetti et al., 62 

2006; Liu et al., 2021; Pham et al., 2015; Reichenbach et al., 2018; Youssef and Pourghasemi, 63 

2021).  64 

 65 

Traditional methods such as the expert-based Analytical Hierarchy Process (AHP), multi-66 

variate statistics, data-driven Frequency Ratio (FR) have been employed for landslide 67 

susceptibility for many years, with satisfactory results (Castellanos Abella and Van Westen, 68 

2008; Komac, 2006; Pradhan, 2010). Examples of such approaches is given in the study area, 69 

by Floris et al. (2011) which combined traditional LSM methods with an updated online 70 

landslide database in the Veneto Region, Italy, where they used online spatial data from Italian 71 

portals for mapping landslide susceptibility at medium and large scales. Afterwards, with the 72 

development of new approaches, susceptibility modelling has advanced from traditional 73 

approaches. Presently, two approaches: (1) statistical and (2) machine learning, are practised 74 

for LSM at investigating the landslide predisposing factors and to map the geographical 75 
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distribution of landslide processes. Reichenbach et al., (2018) classified landslide susceptibility 76 

models into six main groups: (1) classical statistics, (2) index-based, (3) machine learning, (4) 77 

multi-criteria analysis, (5) neural networks, and (6) others. Research by (Reichenbach et al., 78 

2018) also depicted that before 1995, only five models were used for LSM, but in recent times, 79 

an investigation of 19 other models was carried out, which yielded good results. More than 50 80 

per cent of the methods consisting of the first five models mentioned above accounted for 81 

landslide susceptibility studies. Recent work of (Stanley et al., 2021) emphasized the 82 

importance of data-driven methods in global LSM, trained to report landslide spatial 83 

occurrences between the periods of 2015-2018. The first version of the Landslide Hazard 84 

Assessment for Situational Awareness (LHASA) from their work for NASA, reported landslide 85 

occurrences with a decision tree model that first defines the intensity of one week of rainfall. 86 

LHASA version 2 used the data-driven model of XG-Boost by adding two dynamically varying 87 

factors: snow and soil moisture. However, despite advances in LSM, the advent of feature 88 

importance or the importance of the causative factors in the prediction capability of a model is 89 

not discussed enough. The need of increasing our control over the model sensitivity to system 90 

parameters changes, including those induced by anthropogenic and climate-change dynamics, 91 

is becoming a key factor in the implementation of truly efficient LSM for risk mitigation 92 

purposes. The VAIA windstorm of 2018, as a typical extreme weather event, may easily escape 93 

traditional statistical prediction schemes and represent, therefore, a challenging test for 94 

exploring the sensitivity of the various LSM models to changing factors and conditions. 95 

 96 

 One goal of this research is to look into the relative changes in LSM accuracy when the least 97 

"important" conditioning factors are removed. Feature selection in LSM is an approach in 98 

reducing landslide conditioning features to improve model performance and reduce 99 

computational costs. The purpose of this approach is to find the optimal set of conditioning 100 
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features that will provide the best fit for the model to yield higher accuracy as predictions. 101 

Micheletti et al., (2014) emphasized the importance of feature selection in LSM and discussed 102 

the use of Machine Learning (ML) models such as Support Vector Machine (SVM), Random 103 

Forest (RF), and AdaBoost for LSM, as well as the significance of associated features within 104 

the confluence of the ML models for feature importance. However, their study did not consider 105 

geological and meteorological features like lithology, land use, and rainfall intensity for both 106 

LSM and feature selection. Studies by Liu et al., (2021) depicted the improvement in the 107 

predictive capability of the so-called Feature Selected Machine Learning (FS-ML) model but 108 

also remarked on the fact that the same features may contribute differently in different ML 109 

models. In this study, we wanted to investigate post-prediction feature selection approach to 110 

improve LSM accuracy in contrast to what has been done in literature like Liu et al., (2021), 111 

where they perform pre-prediction feature importance using approaches like multi-collinearity 112 

analysis, variance inflation factor. The identification of the most crucial features can help in 113 

monitoring the effect of extreme events (such as Vaia) on the increase of landslide hazard. This 114 

has implications for observation of the influence of extreme events on crucial factors in 115 

comprehending the changes in the evolution of hazard can be evaluated.  116 

We present a study in the province of Belluno, northern Italy, with the comparison of feature 117 

or factor importance of statistical and ML models for LSM before the Vaia storm event. The 118 

results from the LSM will be then validated using the IFFI landslide inventory data for testing 119 

the various models' prediction capability with/without certain factors. We also investigate 120 

whether many of the latter features are crucial for LSM. As in many regions over the world, 121 

the same data or factor maps might not be available.  122 

 123 

2. Study area and Data 124 

2.1 Study area  125 
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The area of the Belluno Province (Veneto Region, NE Italy) is part of the tectonic unit of the 126 

Southern Alps. The territory is 3,672 km² wide, stretching from north to south between the 127 

Dolomite Alps and the Venetian Pre-Alps, with elevations ranging from 42 to 3325 m above 128 

mean sea level. From a geological point of view, Dolomite Alps comprises the Hercynian 129 

crystalline basement consisting of micaschists and phyllites intruded by the Permian 130 

ignimbrites (Doglioni, 1990; Schönborn, 1999) These Paleozoic units are mainly outcropping 131 

in the NE and central-West sectors. The Middle-Upper Triassic includes carbonate, volcanic 132 

and dolomitic formations. In particular, the Upper Triassic Main Dolomite covers 14% of the 133 

whole province. Jurassic-Cretaceous limestone and marls are especially located between the 134 

Valsugana and Belluno thrusts (Sauro et al., 2013). Moreover, in the Belluno valley and in the 135 

southern part of the area, Cenozoic sediments, i.e., flysch and molasse and Quaternary glacial, 136 

alluvial and colluvial deposits are largely present. Instead, Venetian Prealps are characterized 137 

by Jurassic-Cretaceous sedimentary cover, such as layered limestones and dolomites with 138 

cherts (Compagnoni et al., 2005; Corò et al., 2015). Because of its morphological 139 

characteristics, the study area is affected by slope instability, which overlay an area of 165 km² 140 

corresponding to 6% of the province (Baglioni et al., 2006). Most of the landslide phenomena 141 

are located in the NW (Upper basin of Cordevole River) and SE (Alpago district) sectors of the 142 

province (Figure 1). The dominant landslide types are slides (47%), rapid flows (20%), slow 143 

flows (12%), and shallow soil slips (7%) (Iadanza et al., 2021). The climate of the province of 144 

Belluno is continental. The mean annual temperature recorded in the period 1961–1990 is 7°C 145 

and the mean precipitation is 1284 mm/year (Desiato et al., 2005) with two peaks distributed 146 

in spring and autumn. In the last 27 years, temperature and rainfall intensity in the study area 147 

have increased due to climatic changes leading to more frequent meteorological conditions 148 

ARPAV (Agenzia Regionale per la Prevenzione e Protezione Ambientale del Veneto).  149 

 150 
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2.2 Landslide inventory data  151 

The inventory of landslide phenomena in Italy (IFFI) conducted by the Italian Institute for 152 

Environmental Protection and Research (ISPRA) and the Regions and Autonomous Provinces 153 

was used in this study(Trigila et al., 2010). The IFFI Project was financed in 1997. Since 2005, 154 

the catalogue is available online and consists of point features indicating the scarp of the 155 

landslides and polygon features delineating the instabilities. The archive stores the main 156 

attributes of the landslides, such as morphometry, type of movement, rate, involved material, 157 

induced damages and mitigation measures. The inventory currently holds 620,808 landslides 158 

collected from historical documents, field surveys and aerial photointerpretation, covering an 159 

area of 23,700 km2, which corresponds to the 7.9% of the Italian territory (Trigila and Iadanza, 160 

2018). In the Belluno province, the IFFI inventory consists of 5934 points of landslides 161 

occurred before 2006 (Baglioni et al., 2006).  162 
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Figure 1: Location of the study area and landslides (yellow points) collected by IFFI 164 

(Inventory of Landslide Phenomena in Italy) project. 165 

 166 

2.3 Landslide conditioning factors  167 

Based on the regional environmental characteristics of the study area and the scientific 168 

literature, fourteen landslide conditioning factors were selected, including: (i) topographical 169 

factors such as elevation, slope angle, slope aspect, topographical wetness index (TWI), 170 

topographical position index (TPI), topographical roughness index (TRI), profile curvature, 171 

and plan curvature; (ii) hydrological factors (i.e., distance to drainage, precipitation); 172 

geological factors (lithology); (iii) anthropogenic factors (distance to roads); and (iv) 173 

environmental factors like Normalized Difference Vegetation Index (NDVI) and landcover 174 
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(see figure 2). A freely accessible digital elevation model (DEM) with a spatial resolution of 175 

25 metres was downloaded from the Veneto Region cartographic portal 176 

(https://idt2.regione.veneto.it), was used to derive the topographical layers. Refer to table 1 for 177 

a detailed description of the conditioning factors. Land cover, lithology maps, road network 178 

and drainage maps were downloaded from the same portal. Rainfall data was downloaded from 179 

the Regional Agency for the Environmental Prevention and Protection of Veneto (ARPAV: 180 

https://www.arpa.veneto.it/ ) web site.   181 

 182 

 183 

 184 

Table 1: Description of the conditioning factors for landslide occurrences.  185 

 186 

Sl 

No. 

Conditioning 

Factor 

Data Range Description/Justification 

1 Elevation 42 m to 3325 

m 

 

The geomorphological and geological processes 

are affected by elevation (Raja et al., 2017). It 

has an impact on topographic characteristics, 

which contribute to spatial differences in many 

landform processes, as well as the distribution of 

vegetation. 

2 Slope Flat areas to 

very high 

slopes till 

86.48° 

Slope is a derivative of the DEM which can cause 

failure of slope (Pham et al., 2018). Landforms 

having a higher angle of slope are usually more 

susceptible to collapse, which is closely 

correlated to landslides. 
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3 Aspect North (0 

degrees) to 

North (360 

degrees) 

Aspect has a correlation with other geo-

environmental factors is a crucial factor for LSM 

that describes the slope direction (Dahal et al., 

2008).  The slope direction to a degree dictates 

the frequency of landslides.   

4 Topographic 

wetness index 

-2.12 to 

20.06 

The influence of topography on the location and 

amount of saturated runoff source areas is an 

essential conditioning factor (Pourghasemi et al., 

2012). TWI measures the amount of 

accumulated water and distribution of soil 

moisture at a location. Higher TWI values can 

relate to higher chances of landslide occurrence.  

5 Topographic 

Position Index 

-1143.68  to 

243.84 

The topographic position index (TPI) shows the 

difference between the elevation of a point and 

its surrounding defined by a specified radius. 

Lower values represents the plausibility of 

features lower than the surrounding, thus 

possibly relating to higher odds of landslide 

occurrence.  

6 Topographic 

Roughness 

Index 

0 to 1077.30 Topographic Roughness Index (TRI) calculates 

the difference in elevation between adjacent 

pixels in a DEM which depicts the terrain 

fluctuation (Riley et al., 1999).  As the slope of a 

landscape moves, the TRI decreases, relating to 

slope movement.  
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7 Profile 

Curvature 

Concave  

Flat  

Convex  

The driving and resisting forces within a 

landslide in the slope direction are affected by 

profile curvature. 

8 Plan Curvature Concave  

Flat  

Convex  

The direction of landslide movement is 

controlled by the plan curvature, which regulates 

the convergence or divergence of landslide 

material (Dury, 1972; Meten et al., 2015). 

9 Drainage 0 to 400 Drainage transports water, which induces 

material saturation, culminating in landslides in 

valleys. (Shahabi and Hashim, 2015).  

10 Rainfall 84 to 1198.05 

(mm/month) 

Precipitation characteristics shift by climatic 

conditions and geographical characteristics, 

resulting in significant temporal and 

geographical variations in rainfall quantity and 

intensity. This can lead to the triggering of 

landslides across large areas but also for specific 

smaller areas. 

11 Lithology Volcanites, 

Pre-Permian, 

metamorphic, 

sequence 

Morainic, 

Gravels, etc. 

The geological strength indices, failure 

susceptibility, and permeability of lithological 

units differ (Yalcin and Bulut 2006), where 

changes in the stress-strain behaviour of the rock 

strata can be caused by lithological unit 

variation. Slope failure typically occurs on a 

slope with low strength and permeability. 
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12 Distance to 

Roads 

0 to 200 A crucial manmade element impacting the 

occurrence of landslides is roads because of road 

clear-cutting and construction activities 

(Dunning et al., 2009). 

13 Landcover Rock, Forest, 

Urban cover 

etc.  

Land cover can be utilized to describe the 

region's vastly dismembered zones and the 

likelihood of landslide activities. 

14 NDVI -0.66 to 0.66 NDVI is important in realizing the amount of 

vegetation cover which can be interpreted to 

understand the strength of the slope and the 

landslide occurrences. The NDVI reflects the 

inhibitory effect of landslide occurrence (Huang 

et al., 2020).   

 187 
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 192 

Figure 2: Maps of the conditioning factors used in this study: (A) Elevation, (B) Slope, (C) 193 

Aspect, (D) Topographical wetness index, (E) Topographical position index, (F) Topographical 194 

roughness index, (G) Profile curvature, (H) Plane curvature, (I) Distance to drainage networks, 195 

(J) Rainfall monthly average (1994-2020) mm, (K) Lithology, (L) Distance to road network 196 

(M) Landcover, (N) NDVI 197 

 198 

3. Methodology 199 

 200 

We propose an approach that help understand the intrinsic relationship between the features 201 

and the output post-prediction, which can be then refined by removing the less "important" 202 

features throughout the statistical and ML models. As stated previously, the study attempts the 203 

application of sensitivity analysis to understand relative feature importance as a preliminary 204 
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step towards the modelling of a space-time changing parameter in LSM methods. The apparent 205 

reality is not as simple as using a certain model that gives the highest LSM accuracy and using 206 

said derived outputs maps for disaster risk management and mitigation measures. Therefore, It 207 

is important to test the effects of the features and it’s relative importance in LSM. The 208 

successive sub-sections address the definitions of the statistical and ML models for LSM.  209 

 210 

3.1 Statistical approach 211 

3.1.1 Ensemble Frequency Ratio - Evidence Belief Function 212 

 213 

In landslide susceptibility studies, the frequency ratio (FR) model is often applied. This is a 214 

straightforward evaluation tool which calculates the likelihood of landslide occurrence and 215 

non-occurrence for each conditioning factor. (Lee, 2013; Mondal and Maiti, 2013; Shahabi et 216 

al., 2014). For each landslide, the FR is a probabilistic model based on observed correlations 217 

between landslide distribution and related parameters (Lea Tien Tay 2014). The model depicts 218 

the relationship between spatial locations and the factors that determine the occurrence of 219 

landslides in a specific area. Spatial phenomenon and factor classes correlation can be found 220 

through FR and is very helpful for geospatial analysis (Mahalingam et al. 2016; Meena et al. 221 

2019b). Figure 3 gives an overview of the methodology employed in this study.  222 

The proportion of landslide inventory points for all classes within each factor can be used to 223 

compute FR weights. The area ratio for each of the factor classes in relation to the total area of 224 

the study region was calculated by overlapping the landslide inventory points with the 225 

conditioning factors. The FR weights are calculated by dividing the landslide occurrence ratio 226 

in a class by the entire area in that class (Demir et al. 2012).  227 

 228 
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 230 

Figure 3: Overview of the conceptual workflow of methodology for landslide susceptibility 231 

assessment. 232 
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Using the equation, the landslide susceptibility index (LSI) was computed by summing the 233 

values of each factor ratio (Lee, 2013): 234 

 235 

LSI =∑ FR  (Eq.2) 236 

 237 

LSI= (DEM)+(slope)+(aspect)+(Topographic Wetness Index)+(Topographic Roughness 238 

Index)+(Topographic Position Index)+(Distance to road)+(Distance to drainage)+(Land 239 

Cover)+(Lithology)+(NDVI)+(Rainfall)+(Profile Curvature)+(Plain Curvature) 240 

 241 

Where the landslide susceptibility index is the LSI, and the frequency ratio of each factor type 242 

is the FR. An FR value of 1 in the relationship analysis implies that the density of landslides in 243 

a specific class is proportionate to the size of the class in the map; an LSI value of 1 is an 244 

average value. Higher LSI values suggest a stronger correlation, whereas lower LSI values 245 

imply a weaker correlation. In a nutshell, a greater LSI value represents higher landslide 246 

susceptibility and the vice-versa. We integrated the LSI results with evidence belief functions 247 

(EBF) derived predictor values. The EBF uses the conditioning factors defined by FR as the 248 

input data. Eq. (3) was applied to the rating of every spatial factor with the training dataset. 249 

 250 

𝑃𝑃𝑃𝑃 = 𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆−𝑆𝑆𝑆𝑆𝑆𝑆𝐴𝐴𝐴𝐴
𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆−𝑆𝑆𝑆𝑆𝑆𝑆𝐴𝐴𝐴𝐴

𝑚𝑚𝑚𝑚𝑚𝑚  (Eq.3) 251 

 252 

where SA  is the indicator of spatial association (Bel) between spatial variables and landslides 253 

and PR is the prediction rate. The lowest absolute difference of all variables is divided by the 254 

computed absolute difference between the maximum and least SA values (Table 2). The 255 

eigenvectors of the matrix were calculated by normalising each column's pairwise result. The 256 

eigenvalue was calculated by dividing each pairwise importance rate in a column by the total 257 
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of the pairwise importance rates in that column. The fractional predictor is obtained by 258 

averaging the eigenvectors across a row of matrices. Pairwise comparison of the PR values of 259 

the slope failure predictors yielded the pairwise rating matrix of the predictor rating. 260 

3.2 Machine learning models 261 

3.2.1 Random Forest model 262 

Random Forest (RF) is based on the fundamental concept of the "wisdom of crowds" where 263 

multiple decision trees, introduced by (Breiman, 2001), has been utilized in a number of remote 264 

sensing research for a variety of applications.(Melville et al., 2018). RF creates many deep 265 

decision trees using the training data and it can overcome the overfitting problem mostly 266 

resulting from complex datasets better than other decision trees. Each RF decision tree gives a 267 

prediction, which is then weighted according to the value created from votes from each tree 268 

(see figure 4). Since the RF has shown an impressive performance for classification purposes, 269 

it is regarded as one of the most efficient non-parametric ensembles models (Chen et al., 2017). 270 

 272 

Figure 4: Conceptual diagram of the Random Forest model. 273 

 274 

3.2.2 XG-Boost model 275 
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Extreme gradient boosting or commonly known as the XG-Boost ML model is an optimized 276 

gradient boosting algorithm that is designed for optimum speed and performance and boosting 277 

ensembles are used to generate a prediction model. (Sahin, 2020). The core idea of a boosting 278 

algorithm is to combine the weaker learners to improve accuracy (Can et al., 2021). The model 279 

is known for its fast-training speed for classification tasks. In the study, we use training 280 

parameters to adjust the XG-Boost algorithm like learning rate, subsample ratio, maximum 281 

depth of the tree and others. It uses boosting techniques to reduce overfitting problems to 282 

improve accuracy results (figure 5).   283 

 284 

 286 

Figure 5: Training and testing procedure of the XG-Boost model. 287 

3.3 Feature selection algorithms 288 

The goal of feature selection is to aid in the discovery of acceptable conditions for training the 289 

models and to increase generalisability in landslide prediction. This selection help eliminate 290 

the irrelevant (less important) conditioning factors to obtain optimal prediction accuracy 291 

(Micheletti et al., 2014). For the statistical model, we used class weights obtained from 292 
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frequency ratio and used them as input for generating predictor rate from FR-EBF model which 293 

gives the final weights of the conditioning factors. So, we used the predictor rate weights to 294 

select the suitable features. 295 

 296 

In terms of the feature importance for selecting the right set of features (or factors in this case) 297 

for both RF and XG-Boost, we use the in-built impurity feature importance algorithm which is 298 

performed on the training set. Based on the results as ranks of features sorted in a descending 299 

order, the most important features will be selected to investigate the improvement of model 300 

performance in terms of the accuracy obtained. Thus, we can comment on whether certain 301 

factors are impactful in performing LSM with ML models. Besides, the comparison of the 302 

resulting important features of the different models can be interpreted to highlight the 303 

respective strengths of the models and allow drawing better conclusions towards the robustness 304 

of the relevant features for landslide predictions.  305 

 306 

4. Results 307 

4.1 Statistical model  308 

The class weights were derived from data driven FR model and the final weights of the factors 309 

were derived by using predictor rate from evidence belief function given in Table 2. The class 310 

and factor weights were calculated using equations 1 and 2. The final weights of landslide 311 

conditioning factors were calculated using an ensemble of FR-EBF, and then utilised to create 312 

the final LSM. Because there is no common approach for identifying landslide susceptibility 313 

classes in the final LSM, we normalised the findings to 0 to 100 for uniformity and 314 

comparability. Using a quantile classification, which separates the values into groups with an 315 

equal number of values, the resultant LSM was classified into five  classes: very low, low, 316 

moderate, high, and very high, as shown in figure 7.(Chung and Fabbri, 2003). This method of 317 
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classification gives a better distribution of values in each class than common approaches such 318 

as natural breaks, which can result in certain classes having limited or excessive data. 319 

In terms of the feature importance that we observe in figure 6 and Table 2 (normalized weights), 320 

based on the trial-and-error approach, factors (or features) under the threshold of 0.3 were 321 

discarded as they did not make much of a difference in terms of predicting landslide 322 

occurrences in the study area. Therefore, five conditioning factors having coefficient values 323 

lower than 0.30 were dropped and overall, the area under the curve (AUC) accuracy still 324 

remained similar to the original accuracy with the 14 factors.  325 

 326 

 327 

Figure 6: Feature importance of the statistical model 328 

 329 

Table 2: Frequency ratio values for spatial factors class weighting and EBF coefficients for 330 

predictor rates (PR) based on degrees of spatial associations. 331 

 332 

Factors and 

classes 

Bel Min Max [Max-Min] Predictor 

Rate 

FR Weights Normalized 

weights  

Elevation  0.07 0.24 0.17 0.73   

<430 0.07     0.50 0.06 

0
0.1
0.2
0.3
0.4
0.5
0.6
0.7
0.8

FR-EBF-14 Features
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430 - 700 0.15     1.13 0.20 

700 - 1000 0.13     0.96 0.19 

1000 - 1500 0.12     0.86 0.15 

1500 - 1900 0.11     0.81 0.12 

1900 - 2300 0.24     1.72 0.17 

>2300 0.18     1.31 0.12 

Profile 

Curvature 

 0.00 0.53 0.53 2.30   

Concave  0.53     1.05 0.40 

Flat  0.00     0.00 0.30 

Convex  0.47     0.95 0.30 

Plan 

Curvature 

 0.00 0.52 0.52 2.26   

Concave  0.52     1.03 0.35 

Flat 0.00     0.00 0.33 

Convex  0.48     0.97 0.32 

Slope  0.14 0.25 0.11 0.48   

<10 0.14     0.70 0.14 

10 - 20 0.23     1.11 0.22 

20 - 30 0.25     1.25 0.27 

30 - 40 0.20     0.99 0.20 

>40 0.17     0.86 0.17 

Distance from 

drainage 

 0.02 0.36 0.34 1.49   

0 - 100 0.36     1.15 0.28 

100 - 200 0.30     0.97 0.19 

200 - 300 0.23     0.74 0.12 

300 - 400 0.10     0.31 0.07 

>400 0.02     0.06 0.34 
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Distance from 

roads 

 0.08 0.24 0.15 0.67   

0 - 50 0.36     1.15 0.27 

50 - 100 0.30     0.97 0.19 

100 - 150 0.23     0.74 0.17 

150 - 200 0.10     0.31 0.16 

>200 0.02     0.06 0.13 

Landcover  0.01 0.24 0.23 2.98   

Urban 0.17     1.48 0.17 

Rocks 0.10     0.90 0.09 

Arable 0.01     0.07 0.01 

Permanent 

cultivation 

0.10     0.92 0.13 

Forest 0.11     0.95 0.11 

Grassland 0.24     2.11 0.14 

Shrubland 0.04     0.37 0.04 

Sparse 

vegetation 

0.12     1.08 0.21 

Water body 0.12     1.05 0.09 

TWI  0.17 0.25 0.08 1.00   

-2.12 - 1.52 0.19     1.01 0.20 

1.52 - 3.35 0.20     1.04 0.20 

3.35 - 5.70 0.18     0.92 0.18 

5.70 - 9.62 0.17     0.90 0.18 

9.62 - 20.06 0.25     1.30 0.24 

TPI  0.00 0.31 0.31 1.35   

-1143.68 - -

202.34 

0.00     0.00 0.00 

-202.34 - -

17.33 

0.18     0.74 0.21 
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-17.33 - -1.01 0.26     1.06 0.27 

-1.01 - 20.75 0.24     0.98 0.26 

20.75 - 243.84 0.31     1.24 0.27 

TRI  0.00 0.34 0.34 1.47   

0 - 4.22 0.22     0.73 0.23 

4.22 - 21.1 0.34     1.11 0.35 

21.12 - 46.47 0.25     0.82 0.22 

46.47 - 257.70 0.20     0.65 0.20 

257.70 - 

1077.30 

0.00     0.00 0.00 

Rainfall 

intensity 

 0.00 0.81 0.81 3.54   

84 - 110.83 0.81     11.29 0.32 

110.83 - 

127.38 

0.08     1.15 0.27 

127.38 - 

140.80 

0.05     0.70 0.15 

140.80 - 

157.35 

0.06     0.81 0.19 

157.35 - 

198.05 

0.00     0.00 0.06 

NDVI  0.14 0.25 0.11 0.48   

-0.66 - 0.15 0.14     0.70 0.13 

0.15 - 0.34 0.22     1.13 0.21 

0.34 - 0.52 0.25     1.26 0.25 

0.52 - 0.66 0.21     1.07 0.21 

0.66 - 0.99 0.18     0.89 0.20 

Aspect  0.05 0.15 0.09 0.41   

Flat (-1) 0.11     1.02 0.10 

North (0-22.5) 0.08     0.75 0.07 
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Northeast 

(22.5-67.5) 

0.09     0.84 0.09 

East (67.5-

112.5) 

0.11     1.08 0.11 

Southeast 

(112.5-157.5) 

0.14     1.31 0.14 

South (157.5-

202.5) 

0.15     1.40 0.14 

Southwest 

(202.5-247.5) 

0.14     1.33 0.14 

West (247.5-

292.5) 

0.08     0.76 0.09 

Northwest 

(292.5-337.5) 

0.05     0.50 0.07 

North (337.5-

360) 

0.06     0.58 0.06 

        

Lithology  0.04 0.26 0.22 2.84   

Volcanites 0.26     3.45 0.16 

Pre-Permian 

metamorphic 

sequence 

0.11     1.50 0.11 

Morainic 0.06     0.85 0.15 

Gravels 0.04     0.52 0.04 

Mix of alluvial 

deposits 

0.05     0.70 0.03 

Conglomerate

s 

0.21     2.84 0.21 
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Limestone and 

dolomitic 

limestone 

0.13     1.76 0.16 

Calcareous 

shales 

0.08     1.04 0.08 

Shales and 

gypsums 

0.06     0.76 0.07 

Alternation of 

marls and 

sandstones 

0.07     0.91 0.06 

Water body 0.22     2.97 0.00 

 333 
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Figure 7: Landslide susceptibility maps derived using the ensemble of FR-EBF approaches 335 

for (A) 14 landslide features and (B) 9 landslide features (Black square represents the 336 

enlarged area). 337 

 338 

4.2 Machine learning models 339 

The LSM was generated based on the conditioning factor data, where the model learnt the 340 

information from the feature maps, which helped identify areas of susceptibility. The final 341 

results of the ML models in generating the LSM are given in Table 3. We observe that the AUC 342 

scores of RF are not much apart from the XG-Boost model, indicating very good prediction 343 

capability of both the models. Based on the information in Table 2, the number of pixels in the 344 

moderate susceptibility class is more in the XG-Boost model than the RF model. Visually the 345 

results show more susceptible areas near the landslide features (figures 8 and 9).  346 

The model performance in terms of the accuracy of AUC is relatively similar to the results after 347 

eliminating the lower degree of feature importance for both RF and XG-Boost. As discussed 348 

previously in section 3.3, the feature importance for the ML models is carried out using the 349 

impurity feature importance algorithm that enables to assess the relative relevance of the 350 

conditioning factors in the optimal prediction of the landslides in terms of accuracy. As seen 351 

in figure 10, the factors of Landcover, Profile Curvature, Plan Curvature, TWI and TPI have 352 

the lowest values for the RF model. After trial-and-error, a value of 0.03 was chosen as the 353 

threshold, and any factors above that were considered the "important" factors for landslide 354 

susceptibility. Hence, in figure 8, we see that the five factors mentioned above are removed 355 

and giving us 0.906 AUC as accuracy, which is better in AUC accuracy without removing the 356 

five factors (0.902 Table 3).  357 

Similarly, the same was repeated for the XG-Boost ML model and referring to Table 3, and 358 

despite removing the lower valued conditioning factors of Profile Curvature, TPI, and Plan 359 
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Curvature, the AUC accuracy score was similar (Table 3). We observe that Slope and Distance 360 

to Roads had a much bigger impact on the RF mode than the XG-Boost model. On the other 361 

hand, Lithology played a bigger role in estimating landslide occurrences in the XG-Boost 362 

model. These observations indicate interesting results which will be discussed further in the 363 

discussion section.  364 

 365 

Table 3: Overall table with AUC results for landslide susceptibility of Belluno. 366 

 367 

No. Model AUC  

1 FR-EBF 14 features 0.836 

2 FR-EBF 9 features 0.834 

3 RF 14 features 0.902 

4 RF 9 features 0.906 

5 XG-Boost 14 features 0.910 

6 XG-Boost 10 features 0.907 

 368 

 369 
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 371 
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Figure 8: LSMs derived using the Random Forest approach for (A) 14 landslide features and 372 

(B) 9 landslide features (Black square represents the enlarged area). 373 

 374 

 375 
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 377 

Figure 9: LSMs derived using the XG-Boost approach for 378 
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(A) 14 landslide features and (B) 9 landslide features (Black square represents the 379 

enlarged area). 380 

 381 

 382 

 383 

Figure 10: Feature importance of the RF and XG-Boost models. 384 

 385 

5. Validation 386 

 387 

Validation is crucial in producing quality LSMs for natural hazards where the information 388 

presented in the map is beneficial for planners (Goetz et al., 2015) A number of validation 389 

approaches may be used to assess the quality of the LSMs. We compare the landslide inventory 390 

data to the resultant maps derived using the ensemble of FR-EBF, machine learning RF and 391 

XG-Boost models. The efficiency of any model for LSM is calculated by comparing the 392 

inventory data to the produced maps. This reflects if the models in use can accurately forecast 393 

which areas are susceptible to landslides (Pourghasemi et al., 2018). The findings from the total 394 

0

0.05

0.1

0.15

0.2

0.25

RF-14 Features XG-Boost-14 Features
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landslide input events were validated using 30% of the landslide occurrences. Validation for 395 

this study was done using the Receiver Operating Characteristics (ROC) and the Relative 396 

Landslide Density (R-Index) approaches. 397 

 398 

5.1 Receiver Operating Characteristics (ROC) 399 

 400 

The receiver operating characteristics (ROC) approach was used for this study to corroborate 401 

the six resultant LSMs from statistical and machine learning using the validation data. The 402 

ROC approach demonstrates the assessment between the true positive rate (TPR) and the false 403 

positive rate (FPR) in the resulting LSMs (Ghorbanzadeh et al., 2018; Linden, 2006). TPRs are 404 

pixels in the landslide validation data that are correctly categorised as high susceptibility, 405 

whereas FPRs are pixels that are erroneously labeled. TPRs versus FPRs are shown to create 406 

ROC curves. The AUC refers to the degree to which the generated LSMs are accurate  The 407 

AUC indicates whether more correctly labelled pixels were present than incorrectly labelled 408 

pixels. Greater AUC values indicate that the susceptibility map is more accurate and the vice-409 

versa. If the AUC values are near to unity or one, the susceptibility map is meaningful. A map 410 

with a value of 0.5 is considered insignificant since it was created by chance. (Baird, 2013). 411 

 412 

Figure 11 shows the accuracy values obtained using the ROC technique for the statistical 413 

approaches of FR-EBF and machine learning approaches of RF and XG-Boost. XG-Boost 414 

shows the highest accurate results with an AUC value of 0.91 and RF with 0.906, and FR-EBF 415 

with 0.836 (refer to Table 3). These results are quite good as it is closer to unity or one. The 416 

ensemble of FR-EBF shows lower AUC values than the machine learning-based XG-Boost and 417 

Random Forest. Machine learning results may vary as the models used landslides and non-418 

landslides features as training data, whereas results of FR-EBF are derived only from the 419 
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landslide data. The results could vary based on the geographical location and the selection of 420 

landslide conditioning factors as well.  421 

422 

 423 

Figure 11. The ROC represents the success rate curves for the statistical based and machine 424 

learning models for LSM in Belluno province, Italy. 425 

 426 

 427 

 428 

5.2 Relative Landslide Density (R-Index) 429 

 430 

The relative landslide density index was also used to assess the accuracy of the LSMs that 431 

resulted (R-index). Equation (4) is used to get the R-index: 432 

R = (ni/Ni)/Σ(ni/Ni)) ×100 (Eq.4) 433 

 434 
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where Ni is the percentage of landslides in each susceptibility class and ni is the percentage of 435 

land susceptible to landslides in each susceptibility class Table 4 shows the quantile 436 

classification approach to classify the six landslide susceptibility maps into five susceptible 437 

groups. In comparison to the RF and FR-EBF models, the XG-Boost model with 14 and 10 438 

features has a higher R-index for very high susceptibility classes. The R-index findings show 439 

that FR EBF has a better R-index value for high susceptibility class than XG-Boost, which has 440 

the lowest R-index for high susceptibility class. FR-EBF has a higher r-index value for the high 441 

susceptibility class than the other three approaches. In addition, the R-index of FR-EBF is 442 

higher for the very low susceptible class. Table 4 shows the R-index values for susceptibility 443 

class in FR-EBF, RF, and XG-Boost, as well as plots of the same in figure 12. 444 

 445 

Table 4: R-indices for the FR-EBF, RF, and XG-Boost models' landslide susceptibility 446 

mappings (LSMs). 447 

Validation 

methods 

Susceptibility 

class 

Number of 

pixels 
Area (km²) 

Area (%) 

(ni) 

Number of 

landslides 

Landslide 

(%) (Ni) 
R- index 

FR-EBF-14 

Features 
Very Low 

21875 334248750 9.28 48 2.71 6 

 Low 90000 570760000 15.85 171 9.66 13 

 Moderate 165000 896709375 24.90 308 17.40 15 

 High 263750 1026578125 28.50 460 25.99 20 

 Very High 444375 773585000 21.48 783 44.24 45 

        

FR-EBF-9 

Features 
Very Low 

19375 323332500 8.98 38 2.15 5 

 Low 91875 541371875 15.03 179 10.11 15 

 Moderate 153125 894758125 24.84 289 16.33 15 

 High 276875 1041846875 28.93 480 27.12 21 
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 Very High 443750 800571875 22.23 784 44.29 44 

        

RF-14 

Features 
Very Low 

6875 682346250 18.94 11 0.62 1 

 Low 34375 658375000 18.28 55 3.11 4 

 Moderate 75625 619031875 17.19 122 6.89 9 

 High 159375 749470625 20.81 264 14.92 17 

 Very high 712500 892657500 24.78 1318 74.46 69 

RF-9 

Features 
Very Low 

7500 735246875 20.41 12 0.68 1 

 Low 30000 632679375 17.57 48 2.71 4 

 Moderate 75000 581844375 16.15 120 6.78 10 

 High 147500 692276250 19.22 245 13.84 17 

 Very High 729375 959834375 26.65 1345 75.99 68 

        

XG-Boost-

14 Features 
Very Low 

11250 1076978750 29.90 18 1.02 1 

 Low 6875 330045625 9.16 11 0.62 3 

 Moderate 11875 278243750 7.72 19 1.07 5 

 High 11250 352568125 9.79 18 1.02 4 

 Very High 947500 1564045000 43.42 1704 96.27 87 

        

 Very Low 12500 1094226250 30.38 20 1.13 1 

 Low 7500 297782500 8.27 12 0.68 3 

XG-Boost-

10 Features 
Moderate 

8125 242914375 6.74 13 0.73 4 

 High 15625 314181875 8.72 25 1.41 7 

 Very High 945000 1652776250 45.89 1700 96.05 84 

6. Discussion 448 
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Landslides are very dynamic in nature, meaning that their behaviour, movement, and spatial 449 

distribution changes over space and time. Therefore, it is vital to analyse the significance of the 450 

conditioning factors that lead to landslide occurrence. The relevance of the conditioning 451 

features for LSM is essential to realize which of the features had impact on the prediction of 452 

landslide occurrences. As not all features can be available globally, or even locally due to 453 

various restriction or data unavailability, it is essential to choose the important features which 454 

could be available for most use cases. For example, topographical features derived from digital 455 

elevation models such as Elevation, Slope, aspect, Plan curvature, Profile curvature, TWI, TPI, 456 

TRI. Other features, such as distance to roads and drainage networks, that might have direct or 457 

indirect influence on the occurrence of landslides, can also be easily accessed through 458 

numerous open-source platforms. In this study we used fourteen features for landslide 459 

susceptibility assessment and caried out the feature importance test using traditional statistical 460 

ensemble model of FR-EBF and machine learning models RF and XG-Boost. The feature 461 

selection approach from statistical model is dependent upon the landslide data and its relation 462 

to each feature and their classes. On the other hand, feature selection and determining their 463 

importance using machine learning models depends upon the landslide and non-landslide 464 

samples used to train the models. We used the in-built impurity feature importance algorithm 465 

to assess the importance of the features during the model training phases. Based on literature 466 

review for this sort of study, there is no standard threshold values available for discarding or 467 

selection of features for LSM. In this study, we used a trial-and-error approach to determine a 468 

threshold of 0.30 for selection of features used for landslide susceptibility for all the three 469 

models.  470 

Feature importance algorithms used in this study are different, however there is similarity in 471 

the importance of the features in both statistical and machine learning algorithms (See figure 6 472 

and 10). As we look at the figures 7, 8, and 9 in the enlarged region, we observe that there are 473 
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not many differences despite removing the least important features. The reason for such 474 

observation can be linked to the lower impact of least important factors on overall LSM results. 475 

Furthermore, there are several factors that determine the importance of features for carrying 476 

out LSM such as (1) completeness and quality of the landslide inventory dataset used for 477 

analysis, (2) mapping scale of the features maps like landcover, lithology, or other geological 478 

features. If the spatial locations of landslides in an inventory does not represent the ground 479 

truth phenomenon, then there can be negative impact of landslide input data for feature 480 

selection. Most importantly, the type of landslide inventory data also impacts the landslide 481 

feature selection algorithms, such as landslides mapped as points and polygons. Sampling 482 

methodology of  landslide selection is important, there are various ways to use landslides in 483 

carrying out susceptibility assessment, many studies have used 70-30 ratio and others have 484 

used random sampling or K-fold sampling methods (Chen et al., 2018; Merghadi et al., 2018). 485 

One of the most important observations from this study was the reclusion of the "least important 486 

features" in the context of LSM. The fact that despite removal of certain factors, we still get 487 

very good results or comparable results post feature removal. This observation annotates the 488 

use of very important features for LSM which can be obtained for most of the use cases.  489 

The use of landslide samples along with non-landslide samples can affect the landslide feature 490 

importance as can be seen in results in this study. In the case of the statistical model, one of the 491 

reasons for the lower AUC performance can be accredited to the absence of the non-landslide 492 

samples. Therefore, the model's ability to discriminate between the non-landslide and landslide 493 

pixels is affected hence, predicting landslide occurrences over potentially non-landslide 494 

locations. Thus, this exhibits the homogeneous distribution of predicted landslide pixels (see 495 

figure 7). We used landslides and non-landslide samples for training the ML models which 496 

shows varying results from that of the statistical ensemble model (See figure 8 and 9). There is 497 

more homogeneous distribution of landslide susceptibility classes in statistical model results, 498 
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but it is evident from the machine learning results that the non-landslide samples have a greater 499 

impact on final landslide susceptibility results.  500 

 501 

7. Conclusions 502 

 503 

In context of the current state-of-the-art approaches for LSM, the contemporary literature lays 504 

emphasis on the advent of different models for improving accuracy of landslide occurrences 505 

against the test data. However, this study investigated how the conditioning factors affect the 506 

overall prediction of landslides in the context of northeast Italy, Belluno province. An 507 

important aspect of this study was to identify if at all, removing the “least important” 508 

conditioning factors in the modelling process affects the performance in predicting new 509 

unknown landslides.   510 

As understood, ML models require conditioning factors as input for LSM, however, investing 511 

on the importance of the features (conditioning factors) could possibly direct a better 512 

understanding of landslide occurrences with respect to the available factor/feature maps for 513 

LSM. This study indicates that various models behave differently with different features, 514 

whereby the same features that are important in one instance of a particular model, can be the 515 

least important (even null-void) in other models. Therefore, this study gave new insights 516 

towards the application and use of already available maps, without spending/exhausting 517 

resources for generating other maps/features that would otherwise not be available, thus 518 

suggesting a streamlined acquisition of data and modelling of landslide occurrences for future 519 

events.   520 

In this study we also concluded that the landslides and non-landslides samples impacts the 521 

feature importance, especially in the ML models as these models use inputs in the form of 522 

landslides and non-landslides samples. Therefore, it was found to be crucial in asserting a 523 
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balance between the two data samples to avoid overfitting or underfitting. This study illustrates 524 

that feature selection is very important step of carrying out LSMs. We found that there are 525 

differences in the final LSMs derived from the statistical and ML models, which are attributed 526 

to the above-mentioned sample selection techniques.  527 

This research introduces the importance of post-training feature importance algorithms for 528 

LSM. This approach can also be used to assess the susceptibility of other natural disasters. The 529 

results can eventually comment whether certain conditioning factors can be discarded while 530 

modelling landslide occurrences. In many parts of the globe, the availability of data is scarce 531 

and therefore, with the ability to model landslides without relying on the conventional factors, 532 

we can still predict landslides spatially over a given region. Although there are certain 533 

drawbacks like (1) the same factor maps will not be available everywhere, (2) factors that are 534 

least important in one region might not repeat the same behaviour in other regions of the world, 535 

and (3) model capability changes with respect to different regions, the resulting susceptibility 536 

maps can still give quality information for local emergency relief measures, planning of disaster 537 

risk reduction, mitigation, and to evaluate potentially affected areas. 538 

 539 
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